f(0)=.03x^2+.06x+30.7

Simple and best practice solution for f(0)=.03x^2+.06x+30.7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(0)=.03x^2+.06x+30.7 equation:


Simplifying
f(0) = 0.03x2 + 0.06x + 30.7

Reorder the terms for easier multiplication:
0f = 0.03x2 + 0.06x + 30.7

Anything times zero is zero.
0f = 0.03x2 + 0.06x + 30.7

Reorder the terms:
0 = 30.7 + 0.06x + 0.03x2

Solving
0 = 30.7 + 0.06x + 0.03x2

Solving for variable 'x'.

Combine like terms: 0 + -30.7 = -30.7
-30.7 + -0.06x + -0.03x2 = 30.7 + 0.06x + 0.03x2 + -30.7 + -0.06x + -0.03x2

Reorder the terms:
-30.7 + -0.06x + -0.03x2 = 30.7 + -30.7 + 0.06x + -0.06x + 0.03x2 + -0.03x2

Combine like terms: 30.7 + -30.7 = 0.0
-30.7 + -0.06x + -0.03x2 = 0.0 + 0.06x + -0.06x + 0.03x2 + -0.03x2
-30.7 + -0.06x + -0.03x2 = 0.06x + -0.06x + 0.03x2 + -0.03x2

Combine like terms: 0.06x + -0.06x = 0.00
-30.7 + -0.06x + -0.03x2 = 0.00 + 0.03x2 + -0.03x2
-30.7 + -0.06x + -0.03x2 = 0.03x2 + -0.03x2

Combine like terms: 0.03x2 + -0.03x2 = 0.00
-30.7 + -0.06x + -0.03x2 = 0.00

Begin completing the square.  Divide all terms by
-0.03 the coefficient of the squared term: 

Divide each side by '-0.03'.
1023.333333 + 2x + x2 = 0

Move the constant term to the right:

Add '-1023.333333' to each side of the equation.
1023.333333 + 2x + -1023.333333 + x2 = 0 + -1023.333333

Reorder the terms:
1023.333333 + -1023.333333 + 2x + x2 = 0 + -1023.333333

Combine like terms: 1023.333333 + -1023.333333 = 0.000000
0.000000 + 2x + x2 = 0 + -1023.333333
2x + x2 = 0 + -1023.333333

Combine like terms: 0 + -1023.333333 = -1023.333333
2x + x2 = -1023.333333

The x term is 2x.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2x + 1 + x2 = -1023.333333 + 1

Reorder the terms:
1 + 2x + x2 = -1023.333333 + 1

Combine like terms: -1023.333333 + 1 = -1022.333333
1 + 2x + x2 = -1022.333333

Factor a perfect square on the left side:
(x + 1)(x + 1) = -1022.333333

Can't calculate square root of the right side.

The solution to this equation could not be determined.

See similar equations:

| 8(a+2)=5a+16+5a | | 2x^2+2x-168=0 | | 2ab+8c= | | f(x)=.03x^2+.06x+30.7 | | (x+1)+7=0 | | 9+81*(-96)-(4+2*5)= | | =x^2+14x+40 | | 3n^2+2n+5=0 | | -24=9x+4-5x | | .5xX=15000 | | N-11n=-5(5+10n)-5(1-5n) | | (3w-4)(5+w)=0 | | 2a+4b=84 | | 2loge(6x)=6 | | 5x+x-2=5x+4 | | 2x-5y-6=0 | | x+126=975 | | -4(u-9)(u-5)=0 | | -7=a/3 | | 4s^2+9=12x | | 3x+1.46=8 | | 4x+x-2=4x+5 | | -19+2x=5 | | 4z(2z+3)=6z+9 | | -3(4z+1)-4(z-3)= | | 9h=38 | | 5(3x-7)-3(x+1)-17x= | | 5z=4z+2 | | 1.2p=-6 | | -7x+36=-20 | | 7-4(k-1)=k | | -3(2x-2)+8x-4= |

Equations solver categories